Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 59(78): 11660-11663, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37695093

RESUMO

Neutrophils are the first immune cells recruited for defence against invading pathogens; however, their dysregulated activation and subsequent release of the enzyme human neutrophil elastase is associated with several, inflammation-based, diseases. Herein, we describe a FRET-based, tri-branched (one quencher, three fluorophores) near infrared probe that provides an intense OFF/ON amplified fluorescence signal for specific detection of human neutrophil elastase. The probe allowed selective detection of activated neutrophils and labelling of neutrophil extracellular traps.


Assuntos
Armadilhas Extracelulares , Neutrófilos , Humanos , Elastase de Leucócito
2.
Opt Express ; 25(10): 11103-11123, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28788793

RESUMO

A SPAD-based line sensor fabricated in 130 nm CMOS technology capable of acquiring time-resolved fluorescence spectra (TRFS) in 8.3 milliseconds is presented. To the best of our knowledge, this is the fastest time correlated single photon counting (TCSPC) TRFS acquisition reported to date. The line sensor is an upgrade to our prior work and incorporates: i) parallelized interface from sensor to surrounding circuitry enabling high line rate to the PC (19,000 lines/s) and ii) novel time-gating architecture where detected photons in the OFF region are rejected digitally after the output stage of the SPAD. The time-gating architecture was chosen to avoid electrical transients on the SPAD high voltage supplies when gating is achieved by excess bias modulation. The time-gate has an adjustable location and time window width allowing the user to focus on time-events of interest. On-chip integrated center-of-mass (CMM) calculations provide efficient acquisition of photon arrivals and direct lifetime estimation of fluorescence decays. Furthermore, any of the SPC, TCSPC and on-chip CMM modes can be used in conjunction with the time-gating. The higher readout rate and versatile architecture greatly empower the user and will allow widespread applications across many techniques and disciplines. Here we focused on 3 examples of TRFS and time-gated Raman spectroscopy: i) kinetics of chlorophyll A fluorescence from an intact leaf; ii) kinetics of a thrombin biosensor FRET probe from quenched to fluorescence states; iii) ex vivo mouse lung tissue autofluorescence TRFS; iv) time-gated Raman spectroscopy of toluene at 3056 cm-1 peak. To the best of our knowledge, we detect spectrally for the first time the fast rise in fluorescence lifetime of chlorophyll A in a measurement over single fluorescent transient.


Assuntos
Óptica e Fotônica , Análise Espectral Raman/métodos , Animais , Clorofila/análise , Clorofila A , Fluorescência , Pulmão/química , Camundongos
3.
Anal Chim Acta ; 754: 91-8, 2012 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-23140959

RESUMO

An electrochemiluminescent cholesterol disposable biosensor has been prepared by the formation of assembled layers on gold screen-printed cells. The detection layer is based on the electro-formation of new luminol copolymers with different synthesized biotinylated pyrroles prepared by click-chemistry, offering a new transduction layer with new electroluminescent properties on biosensors. The electrochemiluminescence (ECL) luminol copolymers are electroformed by cyclic voltammetry (five cycles) at pH 7.0 uses a10(-3)M biotinylated pyrrole-luminol ratio of 1:10 in PBS buffer. With respect to the recognition layer, cholesterol oxidase was biotinylated by incubation with biotin vinyl sulfone, and immobilized on the copolymer by avidin-biotin interaction. The analytical signal of the biosensor is the ECL enzymatic initial rate working in chronoamperometric mode at 0.5V excitation potential with 10s between pulses at pH 9.5. The disposable device offers a cholesterol linear range from 1.5×10(-5)M to 8.0×10(-4)M with a limit of detection of 1.47×10(-5)M and accuracy of 7.9% for 9.0×10(-5)M and 14.1% for 2.0×10(-4)M, (n=5). Satisfactory results were obtained for cholesterol determination in serum samples compared to a reference procedure.


Assuntos
Técnicas Biossensoriais , Colesterol/sangue , Técnicas Eletroquímicas , Medições Luminescentes , Polímeros/química , Avidina/química , Biotina/química , Química Click , Humanos , Concentração de Íons de Hidrogênio , Luminol/química , Modelos Moleculares , Estrutura Molecular , Polímeros/síntese química , Pirróis/síntese química , Pirróis/química , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA